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L A M I N A R  F L U I D  FLOW IN A T W I S T E D  ELLIPTIC T U B E  

Keun-Shik Chang*, Jong-Soo Choi** and Jae-Soo Kim*** 
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Twisted tubes are important in generating secondary flow and fluid mixing in a cross-stream direction. In the present paper, 
the fully developed laminar fluid flow through twisted elliptic tubes is numerically analyzed up to a large twist ratio by using the 
finite difference method. The elliptic solution domain is transformed to a rectangular computational domain by using a new, 
simple, and analytic transformation containing a removable singularity. The effect of the two parameters, the tube twist ratio and 
the aspect ratio of the ellipse, is investigated with respect to their role in determining the axial and circumferential velocities, the 
streamline patterns, and the resistance coefficients. 
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Minor and major  semi-ax is  of an ellipse, respec- 
tivel y 
A prescribed error  
Frict ion factor  
Axia l  length of a twisted tube over  a half rotat ion 
( H - : H * / a )  

: Unit vector  in x, y, z - coo rd ina t e  direction 
: The  distance from the y - a x i s  to the wall  
: Pressure gradient  vector  (P~, Py, P~) 
: Reynolds number, 2a < V. > / ~  
: Unit vector  along a curve on which x, y is fixed 

and z varies 
: The  inward unit vector  normal  to the tube wall 
: Max imum axial  veloci ty in Poiseuille flow 
:Axia l  veloci ty in Poiseuille flow 
: Veloci ty vector  ( V., Vy, V~) 

V'y: Relat ive veloci ty component  with respect to the 
cross-sect ion 

: Deviat ion of the axial  veloci ty from the Poiseuille 
flow 
Rotat ional  Cartesian coordinates  
Fixed Cartesian coordinates  
Flow rate 
Coordinates in the computat ion domain 
Vort ic i ty  vector  w., Wy, wa 
Stream function 
Kinemat ic  viscosity 
Aspect  ratio, b/a 
Counter-clockwise angle from the x-axis  
Ave rage  equivalent  shear stress 
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Superscripts 
n : n- th  i terat ion 
* : Dimensional quanti t ies 

Subscripts 

w : Wall  values 
b : Bulk mean values 

Parenthesis 
< > : Averaged  value 

1. INTRODUCTION 

Fluid flow through ducts of w~rious cross-sectional shapes 
has been quite extensively studied in the l i terature due to its 
many engineering applications. Useful data  on these duct 
flows obtained either theoret ical ly  or by exper imenta l  meth- 
od are collected in the heat  t ransfer  handbook by 
Rohsenow and Har tne t t  (1973). 

F rom an engineering point of view, ducts having good heat  
t ransfer  rate with smaller  wet per imeter  and /o r  with the 
reduced power loss for a given mass flux are somet imes  
required. It has been known that the secondary flow can 
enhance heat  t ransfer  significantly in the curved part  of a 
duct. 

As a means of generat ing the secondary flows, twisted 
tubes have been considered in addition to curved ones. Lopina 
and Bergles (1969) made an exper iment  with a s traight  pipe 
having twisted tape inserted inside. Date (1974) solved numer- 
ically- the identical problem using a finite-difference method. 
Todd (1977) investigated a rather  general  problem, the twist- 
ed tubes. He was able to simplify the Navier-Stokes  equa- 
tions with small twist rat io assumption in the rota t ing coordi- 
nates, which was solved by a regular  per turbat ion method. 
He derived a fourth-order part ial  differential  equat ion for the 
s tream function and showed that  it is identical to the equat ion 
for the small t ransverse displacement of a c lamped elastic 
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Fig. 1 Twisted elliptic tube 
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plate under a constant loading. His analysis is correct in 
principle for a pipe of any cross-section with proper boundary 
conditions, but its validity is limited only to a slightly twisted 
elliptic pipe. 

In the present paper a fully developed laminar flow in a 
twisted elliptic tube (see Fig. 1) is investigated without the 
restriction of a small twist ratio. Three control parameters 
govern this p rob lem: the  pressure gradient in the axial 
direction, the pipe twist ratio and the aspect ratio (the ratio 
of the major axis to the minor axis) of the elliptic cross- 
section. To solve this problem numerically, the governing 
Navier-Stokes equations are first written in the rotating 
Cartesian coordinate system. A new simple transformati~)n 
method is then applied to map the elliptic physical domain to 
a rectangular computational one, which can he in genera] 
applied to a duct of any cross-section. Validity of the present 
solution was demonstrated by its close proximity to the 
Todd's in a small-twist ratio limit. The parametric effects of 
the twist ratio and the cross-sectional aspect ratio have been 
investigated. 

2. G O V E R N I N G  E Q U A T I O N S  A N D  
T R A N S F O R M A T I O N  

The flow configuration under consideration is a twisted 
pipe having a straight center line and a rotating, elliptic 
cross-sectional geometry. Fully-developed viscous flow 
through this pipe is governed by the Navier-Stokes equations 
in a full three-dimensional space. However, they can be 
reduced to a two-dimensional form by using the rotating 
rectangular Cartesian coordinate system shown in Fig. 2 
(Todd, 1977 ; Masliyah and Nandakumar, 1981a, 1981b). The 

Fig. 2 Fixed and rotating Cartesian coordinates 

dimensionless governing equations in the rotating coordi- 
nates are rather complicated and take the following form: 
continuity equation 

8V~ . 8V,. .  z /  8V~ 8V~ \ 
-~ . - -1 - - -~ -  1 - ~ k y ~ - - -  x~-y ) = 0 ( i )  

x-direction momentum equation 

Vy-N-* ~, v~ky-~: .... x ~ - -  
2 V 2 2 2 2 

: - P ~ - - ~ x  ~--~- ~ ~ k ~ )  t~ -~y~-1-Y ~ (2) 
~ a~V~ aV~ aV~ ~ 8V~ . 8V~\ 

- ~y--gx;~--  y-..~- - x ~ / - -  ~ + ~x W - -  ~Y aZ-x ) 

y-direction momentum equation 

Vx (~ -Vy~-t- " O Vy Tf v [ 8 Vy 8 Vy ~ vx  ) 

�9 , 8 2 V y ,  c~2Vy , [ I T ~ 2 [  2 8 2 V y ,  282Vy  
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z-direction momentum equation 
I& OsV. + a V~ , :r , [ c) V~, a Vz \ 

V~ W + ~  v z l y - - & - - - x - ~ -  ) 

- z  , 82V~,  82V~ 
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[ 7: \2[,~82V~ , 282V~ 8V~ 8V~ 
+ k ~ )  P ~x ~-*x - ~ C - - x - , f 7  - y  ay 
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In the above equations, all the gradients in the z-direction 
except the pressure terms are dropped due to the fully- 
developed flow assumption. A stream function which satisfies 
the continuity Eq. (1) is now defined as 

8 r  + :r 
~ - V x  HYV~ 

~ s  V~ ~ x  V~ 
(5) 

With the aid of the vorticity function ,defined by 

8V~ aV~ 
w~ = .................... (6) & ay 

the governing equations are recast as follows: 



4 6  

the stream function equation 
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in the Appendix. The boundary conditions must now be 
respecified. On the wall, 

w~ =-  8x 2 ay2 t - ~ ( 2 V z + x  + y  ) (7) 

z-direction vorticity transport equation 

(8) 8r 8w~ ar 8w,, , n /  8Vz OVz\ 
ay ax ax ay ~ ' H - D ~ x ~ - - Y ~ S ]  

Jr/ 8Vy 8Vy V~) aV. 
~ k Y ~ - - x ~  - *  ax 
z /  8 V~ 8 Vx Vy'~. a ~ k  y ~ x  x ~ - ay 

82w._ a2w~_/ z V /  282w~ 

28zw. 8w. 8oJ~ . ~ 2 ~ \  
y ~X~-x~-X~F-y~--~xyTz~- } 

As a result, the governing equations now consist of Eqs. (4), 
(7) and (8). In solving the axial momentum equation, the 
pressure gradient in z-direction which is directly related to 
the Reynolds number must be specified as a parameter 
controlling the flow rate. However, once the solutions for the 
stream function and the vorticity are obtained, the local 
pressure gradient terms in other directions can be calculated 
from Eqs. (2) and (3). 

It is important in any numerical method for a system of 
partial differential equations that the boundary conditions be 
specified on an exact boundary. The Cartesian coordinates 
are not appropriate for this purpose and thus a new general 
coordinate system is needed. A new simple coordinate trans- 
formation is now proposed as in Fig. 3, i. e., 

l ( y )  {1-- (y/A)2} ~2 
(9) 

X . 

- L (y) 
7 = y  
~ = z  

where l(y) represents the distance from the y-axis  to the 
tube wall. In this particular transformation, the vertex point 
A in Fig. 3 is singular in the sense that one physical point is 
mapped to multiple points in the computational domain. 
However, this singularity is numerically removable since it is 
located on a solid boundary where the flow data are single- 
valued and subject to the no-slip condition. The transformed 
governing equations now become very complicated in the 

computational domain (4, 7, {') and are separately elaborated 

q=k 

-1 
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Computational coordinate system 

r  

V~=O, 
_ 02 r  r : \  8V~ (at 7 =2) (10) 

and 

_I(a~V+/04~2l a2r 
w.= t \ & /  k a y / /  aS = 

z 84 34 8 V. (at 4 = - 1 ,  1) 

Assuming antisymmetry of the pipe flow, we have on the 
x-axis (7=0, 0 < $ < 1 ) ,  

r  o ) = r  o) 
V.( ~, o ) = v . ( 4 ,  o) 
w . ( - $ ,  o)=co~(& o) 

(11) 

where 0 < 4 < 1. 

4. NUMERICAL METHOD 

The complexity of the governing equations requires finite 
difference method as simple as possible to get the axial 
velocity, stream function, and vorticity. We employed the 
successive over-relaxation method after approximating all 
the derivative with second-order central difference schemes. 
The appropriate relaxation factor for the vorticity transport 
equation was found to be near the value 1.0. 

The finite-difference solution did not converge well at high 
Reynolds numbers and high twist ratios if the initial flow 
data were poor. So, the case of small twist ratio was first 
solved and its data were used as an initial condition for the 
more twisted tubes. As H was decreased, optimal over- 
relaxation factors for both the stream-function and the axial 
velocity were also decreased from 1.7 to 1.2. 

As one can see from Fig. 3, the singular point A or the 
maximum-7 point (z/=A) should have one and the same 
functional value for each unknown in the physical plane. 
However, in the numerical procedure the wall vorticity at the 
singular point evaluated by using Eq. (10) becomes widely 
varied depending on what constant-~ line we choose to evalu- 
ate the necessary flow data. We used the data from the 
straight central axis, i.e., the ~ =0 line to evaluate the wall 
vorticity at the singular point A. This actually accelerated 
the convergence rate better than any other methods attempt- 
ed. 

Besides this removable singularity, other merits exist with 
the present body-fitted coordinates : denser mesh points are 
assigned in the region where the nearby wall has a large 
curvature. In addition, the present transformation is analytic 
and applicable to tubes of any general cross-section shape, 
eliminating numerical errors associated with the finite- 
differencing of the transformation metrics that would result 
in any other numerical mappings. 

The iterative numerical procedure is first started by solv- 
ing the finite-difference analog of Eq. (A-5) once, updating 
the vorticity at each interior point. Then, we move to Eq. (A 

-4) for the stream function and Eq. (A-3) for the axial veloc- 
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ity. Normally the number of local iteration needed to achieve 
convergence for the above two equation was increased up to 
five as H was decreased. To solve the axial-velocity Eq. (A 
-3), unknown pressure gradient terms Px and py had to be 
calculated from Eqs. (A-l) and (A-2). 

The above procedure constituted one complete overall 
cycle of iteration. After 200 to 500 overall iterations, the 
preassigned convergence criterion for the vorticity 

Max ( n ) _ _  r , ~ ( n - t )  ( l )  i , j  ~ t , j  

E~= ~5 .0 •  ' (12) 
(n) 

m a x  ( /2 i , j  

was satisfied where the superscript (n) refers to the n-th 
iteration. 

5. R E S U L T S  A N D  D I S C U S S I O N  

Axial velocity of the Poiseuille flow in an untwisted 
straight elliptic tube has the paraboloidal contour 

Vo(x, y) = Uo(1 x2 y2 a2 b2 ) (13) 

which is shown in Fig. 4(a), where U0 represents the maxi- 
mum axial velocity equal to twice the flow rate Q. In Fig. 4(b) 
the axial velocity component is plotted for a twisted tube 
having the same flow parameter P,. Distortion of the profile 
from the paraboloid is clearly visible. Deviation of the axial 
velocity from the paraboloidal Poiseuille flow can be expres- 
sed for a twisted tube by 

W = V ~ - V o  

Todd (1977) solved the fluid flow through a slightly twisted 
elliptic tube. He simplified transformed Navier-Stokes equa- 
tions in the rotating coordinates by using the regular pertur- 
bation method. However, his results show streamlines and 
W-levels having symmetry with respect to both the x-and 
y-axis  for all the twist ratios considered, which could not 
evidently be so for a realistic problem. 

Comparison with Todd's analytic solution is presented in 
Fig. 5, in terms of the maximum relative percentage error in 
the stream function values. As can be observed from the 
curve, maximum error for H - 400 lies within 4%, suggesting 
that Todd's solution is reasonable only for very small twist 
ratios. 

Another comparison between the two methods, the present 
and the Todd's, is demonstrated in the iso- W lines in Fig. 6, 
which are obtained for the same flow and geometric parame- 
ters as in the above. Although the isolines from the present 
method are inclined slightly toward the right, they 
qualitatively agree well with the Todd's solution (Fig.6(a)) for 
the relatively small twist ratio (H = 400). From this result we 
can safely assume that the present numerical solution is 
accurate and more general than Todd's. 

The cross-flow velocity vectors from the present computa- 
tion are shown in Fig. 7. To be able to analyze the viscous 
effect distinguished from the flow rotation due to the tube 
twist, however, we reformulate these velocity components in 
a more convenient way. Let S be a unit vector along a helical 

curve on which the coordinates (x, y) are fixed and z varies ; 

zz~ 

(b) present  s o l u t i o r  

Fig. 4 Axial velocity profile in an elliptic tube (A=2.5, 
P z  = - 1 1 6 0 )  
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this unit vector is pointing to the direction of increasing z. If 
a fluid particle had velocity vector directed to S-direction, it 
would not change its relative position in the different cross- 
sections of the pipe. A careful examination reveals that it is 
the velocity difference 

(k-S) * 

that will cause the migration of a fluid particle relative to the 
[ " ' -  " r  . . . .  . ' ' I  \ pipe cross-section, see Masliyah and Nandakumar (1981b). 

. "-.. -~ . . -  Here, 

.<:-'.'.--5"'J-"-:-. I 
I ./ x \  - / . -  \ ~ ~=  ^ er *. X x y ) /  1+ (x~+y 2) (15) 
[ , "  _ " "  _ " I ( k - 7 t  Y ' + H  -H 

I{ / ' " ,  ii 
( a )  i ' o d d  ' s s o l u t  t o I t  

(b~  p r e s e n t  s o l u t i o n  

Fig. 6 Iso-W contour lines for the same parameters (H=400) 

\ 
/ -  ~ - \ 

I ~ : ~ i :  "-~--; ..... ' 

Fig. 7 Absolute cross-sectional velocity vectors (Vx, V~) : 
/1=2.5, P~=-1160, Re=387, H=20 

Then, the migration will be governed to a first approximation 
by the perturbed velocity having the components 

V'x = V . + ~ y V z  

V'y= V y - ~ x  ~ 
(16) 

These new velocity components are caused by the viscous 
effect and are shown in Fig. 8 as a vector plot for the same 
flow conditions as in Fig. 7. Streamlines outlined by V'x and 
V'y are evidently helpful in figuring the secondary flow 
structures. 

In order to see the effect of the twist ratio, distribution of 
the secondary flow velocity components scaled by U0 is 
shown along the x-axis and y-axis  in Fig. 9. Also presented 
is their stream function contours for different aspect ratios in 
Fig. 10. For the cases of large H or small aspect ratios, the 
secondary flow lags behind the winding motion of the poten- 
tial flow in the twisted tube, as seen from Fig. 10. On the 
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Fig. 8 Relative cross-sectional velocity vectors ( V'x, [Z 'y )  : 
A 2.5, P,= 1160, Re 387, H : 2 0  
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Relative cross-sectional velocity profile on the x-and 
y-axis (A: 1.5) 

contrary, for relatively small H or large aspect ratio, the 
secondary flow accelerates ahead of the twisting rate of the 
potential flow. 

This phenomenon can also be viewed from the axial veloc- 
ity distributions shown in Fig. 11 and 12. Due to the viscous 
rotating flow, larger centrifugal force is generated on the 
fluid particles in the direction of the major axis, but not near 
the wall. Its consequence is that a large positive radial 
pressure gradient is produced in the region where the nearby 
tube wall has large curvature. When a uniformly rotating 
potential flow is superposed on it, it is not difficult to envision 
that a strong secondary flow is resulted due to this circumfer- 
ential pressure gradient, as observed from Fig. 7. The larger 
the aspect ratio of a tube is, the more influential this viscous 
secondary effect becomes. This phenomenon is directly 
related to the large degree of deviation of the axial velocity 
profile from the paraboloid for an elliptic tube of large aspect 
ratio. 

Now, the friction factor f is defined by 

f : _ < ; ~ L  ...... 
1 * z ~-p< K, > 

(17) 

where < r*> is an average equivalent shear stress acting over 

(a) x= l .5 ,  P .... 1444, Re::478.01, H::20 
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/ 
(b) X=2.0, Pz:-1250, Re::424.15, H::20 

(c) x::2.5, P =-1160, Re:: 357 . 53 , Fi:::2:] 
Z 

Fig.10 Contour of secondary stream function 
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( c )  Aspect ratio A : 2 . 5  

Fig.12 Iso- W Contours 
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the tube perimeter and counter-balances the pressure force. 
The so called resistance coefficient f .  Re is then given by 

<Pz> 4A 
/ . R e =  ( G >  (I+A) (18) 

where the pressure gradient P,  is defined along the helical 
curve of constant (x, y) in the moving coordinate system. 

To calculate mean velocity over a cross-section, the 
change of variables technique explained by Davis and Rabin- 
owitz (1975) is used. In Fig. 13 it can be observed from the 
curves of the resistance coefficient (scaled by that of the 
straight tube) that as the the twist ratio increases, the energy 
loss also increases rapidly. 

5. CONCLUSION 

The numerical method developed in the present paper has 
effectively treated the complicated flow through a twisted 
elliptic tube. The tube twist ratio and the aspect ratio of the 
ellipse have indeed been proved to play a significant role in 
the flow patterns. 

The secondary flow lagged behind the winding motion of 
the potential flow in the twisted tube with large value of twist 
ratio and small cross-sectional aspect ratio. On the other 
hand, the secondary flow accelerated beyond the twisting 
rate of the potential flow for comparatively small tube twist 
ratio and large aspect ratio of ellipse. 

For small twist-ratio tubes, the present solution showed 
good agreement with the small-parturtation solution present- 
ed by Todd. 
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A P P E N D I X  

The governing equations in the computational domain ($, 
v, ~') are as fo l lows  

x-direction momentum equation: 



L A M I N A R  F L U I D  F L O W  I N  A T W I S T E D  E L L I P T I C  T U B E  5 1  

x u ~ a~ 

-(~),,,.,~,-(~)~,~+(~) ,-,-~ 

er ~ 3V x  3~ 2 

- -  a x c~ Vx  7( 2 2  + 2 ( ~ )  a" 2 2 z 

x ~ a V ~  x ~r 2 +{2~el(~)  } - ~ - + ( ~ ) V . V , - ( ~ )  Vx ( a - l '  

y-direction momeutum equation : 

a~ 

+ { -  V y + ( - ~ ) V . ~ I - ( - ~ ) ~ } . ? V .  + [ ( ~ - x ) { 1  & 
zr ~ 2 O~ O~ z * 

ay ] a - a ~ r - - - L \ ~ - ] , - \ ~ ]  2~I}  

7l" 2 a 1 2  

K 2 
~ - - ~  =o (A-3) 

Stream-function equation : 

(A-4) 

~- ~. 2 

-(~) ,,t+(-~)/-(-~) ~.<, 
a2~ ~r 2 ~ 2 aVy Vy+ __u V.~I +(-~){(,+(~)~]~+~- (.) 
Jr 2 ~V~ a~ 2 x 2 = 3~ a4 

- - ( 7 )  ~ } 0 ~ - + [ ( ~ - ) { 1 + ( - ~ ) ~ /  }+(@-)(-Ox)  

•  :'~lt+ ae 

er ~ = a 32 V~ a2V~ 

x 2  3V~ z z ~ 

z-direction momentum equation: 

_ ~._ ~ _  ~,~, +[(~)~- ~-(~)~.~ 
2 ,1/" K 2 

Vorticity transport equation : 

+ { _ ~ _ + ( _ ~ )  ~} 8 ~  , /  x \ ( ~  l 8V~ 8 V ~  ~ 7 - * ~ )  ~ - - ~ - a T - )  "~ 

8~ 2 z 2 2 8~ :~ 

7/" 2 

842 

848n 

a~ ~ 85 ~l 8V~ av~  

[ a~ \~ . /  aVx aVx aVx - ~ , ~ } r  - x  & 

a~ & j (A-S) 


